圖3中,將待測讀寫器分別安裝在生產(chǎn)線的四個工位,通過螺母螺絲調(diào)讀寫器托盤高度,達(dá)到讀寫器讀寫檢測距離。將超高頻電子標(biāo)簽安裝在傳送底座上,當(dāng)工具通過讀寫器所在位置時,讀寫器以應(yīng)答模式讀取工件相關(guān)信息。
1.3 測試數(shù)據(jù)的采集
為了自動采集生產(chǎn)線上的讀卡器讀取工件數(shù)量,開發(fā)了一套數(shù)據(jù)采集軟件,其軟件開發(fā)流程圖如圖4所示。該軟件按照功能可以劃分成3部分:應(yīng)用程序接口部分、讀寫器控制部分和數(shù)據(jù)處理部分。讀寫器控制部分主要包括控制射頻模塊、參數(shù)配置模塊和協(xié)議處理模塊[10].根據(jù)圖4,采用C#語言開發(fā)出軟件界面如圖5所示。按下啟動按鈕,數(shù)據(jù)采集軟件動態(tài)采集標(biāo)簽ID號、到達(dá)工位數(shù)、到達(dá)時間及漏讀率。圖5所示為數(shù)據(jù)采集軟件測試的部分?jǐn)?shù)據(jù)。按下停止按鈕,數(shù)據(jù)采集軟件將測試數(shù)據(jù)保存到上位機(jī)。圖5中漏讀率由式(1)計算:
啟動生產(chǎn)線,運(yùn)行平臺,對數(shù)據(jù)進(jìn)行采集。選取工位二和三的讀寫器進(jìn)行分析,作出其漏讀率變化曲線,如圖6所示。
由圖6看出,兩讀寫器的漏讀率變化情況截然不同,其近似分布特性公式見圖7所示。
讀寫器二的漏讀率總體較低,但是隨著使用次數(shù)的增加,漏讀率整體呈現(xiàn)增大的趨勢,說明讀寫器本身性能(包括抗環(huán)境干擾能力)較差,不適于應(yīng)用在精度要求高的場景。而讀寫器三恰好與讀寫器二情況相反,漏讀率呈現(xiàn)遞減的狀態(tài),但從變化曲線看得出其工作性能也不穩(wěn)定。所以,對于這兩臺讀寫器需要對其內(nèi)部影響其讀寫效率的參數(shù)進(jìn)行優(yōu)化,提高工作性能。
本文在現(xiàn)有物流分揀、混合生產(chǎn)智能制造生產(chǎn)線上,測試出了在實際生產(chǎn)線環(huán)境對RRU9806SR超高頻臺面式讀寫器漏讀率。首先,在現(xiàn)有智能制造生產(chǎn)線上搭建了測試讀寫器硬件平臺,接著開發(fā)了數(shù)據(jù)采集軟件采集實際生產(chǎn)線上安裝的標(biāo)簽數(shù)據(jù),并計算出了漏讀率。最后在Matlab軟件中求出了漏讀率的分布圖并求出了漏讀率均方根值。所求漏讀率即為讀寫器漏讀率。求得了漏讀率的分布圖并求出了漏讀率的分布特性表達(dá)式。
此測試方案簡單易用,對讀寫器性能進(jìn)行漏讀率的分析,不需要花費(fèi)較多的人力物力以及資金投資便可以檢測讀寫器的一般性能,對工業(yè)級讀寫器在復(fù)雜環(huán)境應(yīng)用方案和產(chǎn)品檢測方面有借鑒作用。從測試的過程也可反映出RFID讀寫器以及電子標(biāo)簽對于現(xiàn)代各個行業(yè)都有很大的實用價值,而超高頻讀寫器也將因其各種優(yōu)勢更加廣泛的應(yīng)用于各個行業(yè)。在本論文的基礎(chǔ)上,后續(xù)研究工作將提出具體的改善方案來降低漏讀率,對該讀寫器內(nèi)部影響其性能的具體參數(shù)進(jìn)行測試并優(yōu)化,使其更好的用在實際環(huán)境中。
1.3 測試數(shù)據(jù)的采集
為了自動采集生產(chǎn)線上的讀卡器讀取工件數(shù)量,開發(fā)了一套數(shù)據(jù)采集軟件,其軟件開發(fā)流程圖如圖4所示。該軟件按照功能可以劃分成3部分:應(yīng)用程序接口部分、讀寫器控制部分和數(shù)據(jù)處理部分。讀寫器控制部分主要包括控制射頻模塊、參數(shù)配置模塊和協(xié)議處理模塊[10].根據(jù)圖4,采用C#語言開發(fā)出軟件界面如圖5所示。按下啟動按鈕,數(shù)據(jù)采集軟件動態(tài)采集標(biāo)簽ID號、到達(dá)工位數(shù)、到達(dá)時間及漏讀率。圖5所示為數(shù)據(jù)采集軟件測試的部分?jǐn)?shù)據(jù)。按下停止按鈕,數(shù)據(jù)采集軟件將測試數(shù)據(jù)保存到上位機(jī)。圖5中漏讀率由式(1)計算:
漏讀率= (總到位數(shù)-總讀取數(shù))/總到位數(shù)(1)
圖4 測試系統(tǒng)劃分
圖5 數(shù)據(jù)采集軟件界面
2、實驗結(jié)果及分析啟動生產(chǎn)線,運(yùn)行平臺,對數(shù)據(jù)進(jìn)行采集。選取工位二和三的讀寫器進(jìn)行分析,作出其漏讀率變化曲線,如圖6所示。
由圖6看出,兩讀寫器的漏讀率變化情況截然不同,其近似分布特性公式見圖7所示。
讀寫器二的漏讀率總體較低,但是隨著使用次數(shù)的增加,漏讀率整體呈現(xiàn)增大的趨勢,說明讀寫器本身性能(包括抗環(huán)境干擾能力)較差,不適于應(yīng)用在精度要求高的場景。而讀寫器三恰好與讀寫器二情況相反,漏讀率呈現(xiàn)遞減的狀態(tài),但從變化曲線看得出其工作性能也不穩(wěn)定。所以,對于這兩臺讀寫器需要對其內(nèi)部影響其讀寫效率的參數(shù)進(jìn)行優(yōu)化,提高工作性能。
圖6 漏讀率曲線圖
圖7 近似分布特性公式
3、結(jié)論本文在現(xiàn)有物流分揀、混合生產(chǎn)智能制造生產(chǎn)線上,測試出了在實際生產(chǎn)線環(huán)境對RRU9806SR超高頻臺面式讀寫器漏讀率。首先,在現(xiàn)有智能制造生產(chǎn)線上搭建了測試讀寫器硬件平臺,接著開發(fā)了數(shù)據(jù)采集軟件采集實際生產(chǎn)線上安裝的標(biāo)簽數(shù)據(jù),并計算出了漏讀率。最后在Matlab軟件中求出了漏讀率的分布圖并求出了漏讀率均方根值。所求漏讀率即為讀寫器漏讀率。求得了漏讀率的分布圖并求出了漏讀率的分布特性表達(dá)式。
此測試方案簡單易用,對讀寫器性能進(jìn)行漏讀率的分析,不需要花費(fèi)較多的人力物力以及資金投資便可以檢測讀寫器的一般性能,對工業(yè)級讀寫器在復(fù)雜環(huán)境應(yīng)用方案和產(chǎn)品檢測方面有借鑒作用。從測試的過程也可反映出RFID讀寫器以及電子標(biāo)簽對于現(xiàn)代各個行業(yè)都有很大的實用價值,而超高頻讀寫器也將因其各種優(yōu)勢更加廣泛的應(yīng)用于各個行業(yè)。在本論文的基礎(chǔ)上,后續(xù)研究工作將提出具體的改善方案來降低漏讀率,對該讀寫器內(nèi)部影響其性能的具體參數(shù)進(jìn)行測試并優(yōu)化,使其更好的用在實際環(huán)境中。