近年來,推動RF系統(tǒng)實現更寬帶寬、更高性能、更低功耗,同時提高頻率范圍并縮小尺寸的力量越來越強大。這一趨勢已成為技術進步的驅動力,RF器件的集成度遠超以往所見。有許多因素在推動這一趨勢。
衛(wèi)星通信系統(tǒng)為了發(fā)送和接收每天收集到的數TB數據,對數據速率的要求已達到4 Gbps。這一要求推動系統(tǒng)的工作頻率提高到Ku和Ka波段,原因是在這些頻率上更容易實現更寬的帶寬和更高的數據速率。這勢必導致通道密度更高,每通道的帶寬更寬。
在信號情報領域,性能要求也在不斷提高。此類系統(tǒng)的掃描速率越來越高,故而要求系統(tǒng)具有快速調諧PLL和寬帶寬覆蓋范圍。對尺寸更小、重量更輕、功耗更低(SWaP)和集成度更高系統(tǒng)的需求,源于業(yè)界希望在現場操作手持式設備,以及希望提高大型固定位置系統(tǒng)的通道密度。
相控陣的發(fā)展同樣得益于單芯片RF系統(tǒng)集成度的提高。集成讓收發(fā)器越來越小,使得每個天線元件都可以有自己的收發(fā)器,進而促使模擬波束賦形向數字波束賦形轉變。通過數字波束賦形,單一陣列可以同時追蹤多個波束。相控陣系統(tǒng)應用廣泛,包括天氣雷達和定向通信等。由于低頻信號環(huán)境變得越來越擁堵,許多應用不可避免地要求提高頻率。
本文介紹如何利用一種高度集成的架構來應對上述挑戰(zhàn),該架構將AD9371收發(fā)器用作中頻接收機和發(fā)射機,使得整個中頻級及其相關器件都可以從系統(tǒng)中移除。文中比較了傳統(tǒng)系統(tǒng)與提議的架構,并舉例說明了如何通過典型設計流程來實現此架構。具體說來,使用集成收發(fā)器可以實現一些高級頻率規(guī)劃,這是標準超外差樣式收發(fā)器做不到的。
超外差架構概述
超外差架構由于能實現很高的性能而成為多年來的首選架構。超外差接收機架構通常包括一個或兩個混頻級,混頻級饋入模數轉換器(ADC)。典型超外差收發(fā)器架構如圖1所示。
圖1.傳統(tǒng)X和Ku波段超外差接收和發(fā)射信號鏈
第一轉換級將輸入RF頻率上變頻或下變頻至帶外頻譜。第一IF(中頻)的頻率取決于頻率和雜散規(guī)劃、混頻器性能以及RF前端使用的濾波器。然后,第一IF向下轉換為ADC可以數字化的較低頻率。雖然ADC在處理更高帶寬的能力上取得了巨大進步,但為達到最優(yōu)性能,其頻率上限目前是2 GHz左右。輸入頻率更高時,必須考慮性能損失,而且更高輸入頻率要求更高時鐘速率,這會導致功耗上升。
除混頻器外,還有濾波器、放大器和步進衰減器。濾波用于抑制不需要的帶外(OOB)信號。若不加抑制,這些信號會在目標信號上產生雜散,使目標信號很難或無法進行解調。放大器設置系統(tǒng)的噪聲系數和增益,提供足夠高的靈敏度以接收小信號,同時又不是太高以至于ADC過度飽和。
還有一點需要注意,此架構常常需要使用表面聲波(SAW)濾波器以滿足ADC嚴格的抗混疊濾波器要求。SAW濾波器會提供急劇滾降性能以滿足這些要求,但同時也會帶來明顯的延遲和紋波。
圖2所示為一個X波段超外差接收機頻率規(guī)劃示例。該接收機希望接收8 GHz和12 GHz之間的信號,帶寬為200 MHz。目標頻譜與可調諧本振(LO)混頻,產生5.4 GHz IF。然后,5.4 GHz IF與5 GHz LO混頻以產生最終的400 MHz IF。最終IF范圍是300 MHz至500 MHz,這是很多ADC能夠發(fā)揮良好性能的頻率范圍。