第一批神經(jīng)網(wǎng)絡(luò)應(yīng)用程序?qū)W⒂谝曈X處理,以支持諸如自動行人、交通信號或道路特征識別等功能。由于這些系統(tǒng)的性能不斷改進,例如處理越來越大的來自高分辨率相機的數(shù)據(jù)集,因此神經(jīng)網(wǎng)絡(luò)也有望在未來的汽車中發(fā)揮更大的作用。這些作用將包括承擔系統(tǒng)中其它復(fù)雜的信號處理任務(wù),例如雷達模塊及語音識別系統(tǒng)。
隨著神經(jīng)網(wǎng)絡(luò)首次應(yīng)用于車載自動駕駛系統(tǒng),(據(jù)報道,某些國家將在 2019-2020 年型的新車輛中使用神經(jīng)網(wǎng)絡(luò))對同時兼具安全性及可靠性的系統(tǒng)的需求會越來越大。中國政府計劃在 2021 至 2025 年推出自動駕駛車輛。要讓此類系統(tǒng)具備可讓客戶使用的條件,汽車制造商必須同時確保其符合相關(guān)的安全標準,如 ISO 26262 功能安全性。這需要硬件、軟件及系統(tǒng)的綜合發(fā)展。
由于這些系統(tǒng)變得越來越復(fù)雜,因此確保系統(tǒng)可靠安全且能滿足處理需求也成為汽車制造商所面臨的越來越大的挑戰(zhàn)。
結(jié)論
機器學習神經(jīng)網(wǎng)絡(luò)將沿著一條挑戰(zhàn)高效處理性能的發(fā)展道路繼續(xù)闊步前進。先進的神經(jīng)網(wǎng)絡(luò)架構(gòu)已經(jīng)顯現(xiàn)出優(yōu)于人類的識別精確性。用于生成網(wǎng)絡(luò)的最新框架,如 CDNN2,正在推動輕型、低功耗嵌入式神經(jīng)網(wǎng)絡(luò)的發(fā)展。這種神經(jīng)網(wǎng)絡(luò)將使目前的高級輔助駕駛系統(tǒng)具有較高的精確性及實時處理能力。