利用被稱為 CDNN 的框架對網(wǎng)絡(luò)生成策略進(jìn)行改進(jìn)。經(jīng)過改進(jìn)的策略采用在高功耗浮點(diǎn)計算平臺上(利用諸如 Caffe 的傳統(tǒng)網(wǎng)絡(luò)生成器)開發(fā)的受訓(xùn)網(wǎng)絡(luò)結(jié)構(gòu)和權(quán)重,并將其轉(zhuǎn)化為基于定點(diǎn)運(yùn)算,結(jié)構(gòu)緊湊的輕型的定制網(wǎng)絡(luò)模型。接下來,此模型會在一個基于專門優(yōu)化的成像和視覺 DSP 芯片的低功耗嵌入式平臺上運(yùn)行。圖 1 顯示了輕型嵌入式神經(jīng)網(wǎng)絡(luò)的生成過程。與原始網(wǎng)絡(luò)相比,這種技術(shù)可在當(dāng)今量產(chǎn)型車輛的有限功率預(yù)算下帶來高性能的神經(jīng)處理表現(xiàn),而圖像識別精確度降低不到1%。
圖 1. CDNN 將通過傳統(tǒng)方法生成的網(wǎng)絡(luò)權(quán)重轉(zhuǎn)化為一個定點(diǎn)網(wǎng)絡(luò)
一個由低功耗嵌入式平臺托管的輸入大小為 224x224、卷積過濾器分別為 11x11、5x5 及 3x3 的 24 層卷積神經(jīng)網(wǎng)絡(luò), 其性能表現(xiàn)幾乎是一個在典型的 GPU/CPU 綜合處理引擎上運(yùn)行的類似 CNN 的三倍,盡管其所需的內(nèi)存帶寬只是后者的五分之一且功耗大幅降低。
下一代深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)
汽車制造業(yè)進(jìn)入神經(jīng)網(wǎng)絡(luò)領(lǐng)域所習(xí)得的經(jīng)驗不斷推動技術(shù)的發(fā)展,并因此開發(fā)出了更先進(jìn)的網(wǎng)絡(luò)架構(gòu)及更復(fù)雜的拓?fù)?,如每級多層拓?fù)?、多?/span>/多出及全卷積網(wǎng)絡(luò)。新推出的重要網(wǎng)絡(luò)類型不僅可用來識別物體,也可用來識別場景,從而提供用以解決汽車領(lǐng)域應(yīng)用程序(如自動駕駛功能)所需的圖像分割。
當(dāng)然,中國 40 家左右的汽車制造商并不會在此道路上踽踽獨(dú)行。他們會與百度等技術(shù)公司進(jìn)行密切合作。技術(shù)公司是這些網(wǎng)絡(luò)和架構(gòu)發(fā)展的核心。CNN 網(wǎng)絡(luò)生成器功能的完善也為新的網(wǎng)絡(luò)架構(gòu)和拓?fù)涮峁┝酥С?,?SegNet 及 GoogLeNet 與 ResNet 等其它網(wǎng)絡(luò)結(jié)構(gòu)以及高級網(wǎng)絡(luò)層(圖 2)。此外,一鍵啟用也讓預(yù)訓(xùn)網(wǎng)絡(luò)轉(zhuǎn)換成優(yōu)化的實時網(wǎng)絡(luò)執(zhí)行更為便捷。為確保給常用的網(wǎng)絡(luò)生成器提供支持,CDNN 框架與 Caffe 和 TensorFlow (谷歌的機(jī)器學(xué)習(xí)軟件庫)都有合作。
圖 2網(wǎng)絡(luò)生成器的發(fā)展為新網(wǎng)絡(luò)層及更深的架構(gòu)提供了支持
由于最新推出的嵌入式處理平臺在可擴(kuò)展性及靈活性上都有了很大改進(jìn),因此嵌入式部署也可以利用這些改進(jìn)來完善自身。由于深度學(xué)習(xí)領(lǐng)域的發(fā)展越來越多樣化,因此擁有一個不僅能滿足當(dāng)今處理需求,也具有適應(yīng)未來的技術(shù)創(chuàng)新的靈活架構(gòu)非常重要。
神經(jīng)網(wǎng)絡(luò)在自動駕駛的應(yīng)用