貼片天線(例如 Pulse Electronics 的 W6112B0100)可支持包括智能電表、遠(yuǎn)程監(jiān)測和物聯(lián)網(wǎng)設(shè)計(jì)在內(nèi)的 2 x 2 多路輸入、多路輸出 (MIMO) LTE 應(yīng)用。盡管該天線的尺寸大于芯片天線(約為 8.8 英寸長 × 0.8 英寸高),但根據(jù)所支持的具體頻帶,其效率可達(dá) 55% 至 75%(圖 5)。
圖 4:貼片天線(例如 Pulse Electronics 的多頻帶 W6112B0100)并非貼裝在 PC 板上,而是連接到產(chǎn)品外殼的內(nèi)部,遠(yuǎn)離板和電路。
圖 5:適用于 2 x 2 MIMO 4G/LTE 的 W6112B0100 設(shè)計(jì)為在 698 MHz 至 960 MHz、1.428 GHz 至 1.51 GHz、1.559 GHz 至 1.61 GHz、1.695 GHz 至 2.2 GHz、2.3 GHz 至 2.7 GHz 和 3.4 GHz 至 3.6 GHz 等多個頻帶工作,并能保持較高的效率。
第三種天線選擇是 PC 板印制線方法,該方法使用 PC 板的一個或多個蝕刻層來創(chuàng)建天線。此解決方案沒有直接的 BOM 成本,并且極度靈活,因?yàn)樗苡糜趧?chuàng)建使用分立元器件無法實(shí)現(xiàn)的定制或獨(dú)特天線。單一的印制線天線可以覆蓋包括濾波在內(nèi)的多個頻帶,并且支持多極化。
但天下沒有“免費(fèi)的午餐”,因?yàn)橛≈凭€天線往往需要占用大量的 PC 板空間,而且它的性能會受附近布局、元器件貼裝和元器件類型的很大影響。理論上的印制線天線與其實(shí)際安裝之間存在可能很難逾越的重大差距。
當(dāng)系統(tǒng)包含多個天線,而拓?fù)湟笤谔炀€之間切換時(shí),就會出現(xiàn)這樣的問題——如何實(shí)現(xiàn)切換。機(jī)電開關(guān)很有效,并且具有出色的電氣規(guī)格,但對于小型或便攜式設(shè)備以及需要快速開關(guān)的設(shè)備而言,這顯然不切實(shí)際。相反,應(yīng)使用電子開關(guān),通常是基于 PIN 二極管的開關(guān)(參見“射頻開關(guān)如何以及為何使用 PIN 二極管”)或固態(tài)開關(guān)(參見“半導(dǎo)體射頻開關(guān):體積小但性能強(qiáng)的電路元器件”)。盡管有時(shí)需要 PIN 二極管的屬性,但與基于 PIN 二極管的開關(guān)相比,固態(tài)開關(guān)更容易使用和引入到電路設(shè)計(jì)中。
例如,Peregrine Semiconductor 的 PE42422MLAA-Z 是一款不含任何移動零件的基本 SPDT 射頻開關(guān),適合在 5 MHz 至 6 GHz 頻帶工作。將其引入到電路設(shè)計(jì)時(shí),面臨的設(shè)計(jì)挑戰(zhàn)也較少(圖 6)。這款 50 ? 元器件采用微型 12 引線 2 x 2 mm QFN 封裝,結(jié)合了板載的 CMOS 控制邏輯和低壓 CMOS 兼容型控制接口,無需外部元器件。它通常能在 2 毫秒內(nèi)完成通道切換。
圖 6:當(dāng)有多個天線時(shí),往往需要在天線之間切換射頻信號路徑。純電子射頻 SPDT 開關(guān)(例如 Peregrine Semiconductor 的 PE42422MLAA-Z)提供的方法只需通過簡單的安裝和控制便能做到這一點(diǎn),而且在 5 MHz 至 6 GHz 頻帶范圍的開關(guān)時(shí)間僅為 2 毫秒。
插入損耗的范圍為 0.23 dB (100 MHz) 至 0.9 dB (6 GHz),整個范圍內(nèi)的三階交調(diào)點(diǎn) (IIP3) 為 75 dBm(最小值)。利用這類開關(guān),可以輕松地在通用端口與兩個獨(dú)立端口之間實(shí)現(xiàn)隔離度為 68 dB(較低頻率下)至 17 dB(較高頻率下)的射頻信號雙向路由。插入損耗為 0.23 至 1.25 dB,同樣取決于頻率。
采用先進(jìn)的技術(shù)解決現(xiàn)實(shí)世界的問題
任何天線的性能都會受到其周邊環(huán)境的影響,包括附近的元器件、屏蔽和封裝等??梢詫@些元素的效應(yīng)進(jìn)行建模,并在最終設(shè)計(jì)中加以考慮,但這往往需要多次交互才能達(dá)到需求沖突的平衡(參見“了解天線的規(guī)格和操作,第 1 部分”和“了解天線的規(guī)格和操作,第 2 部分”。