5.大數據驅動故障診斷深度學習技術
制造裝備運行過程中產生的海量特征數據蘊含大量的故障信息,在收集智能裝備運行特征數據的基礎上,應用深度學習算法對大數據進行知識挖掘,獲尋與故障有關的診斷規(guī)則,實現對制裝備的故障進行智能預測和分析。
6.數字孿生與數字樣機建模分析技術
數字孿生充分利用物理模型、傳感器更新、運行歷史等數據,集成多學科、多物理量、多尺度、多概率的仿真過程,在虛擬空間中完成映射,從而反映了相對制造過程中各裝備的全生命周期過程。
7.多技術路線工作方案優(yōu)化決策技術
針對不確定性的、半結構化或非結構化的智能制造工作方案決策問題,通過信號推理、定量推理等方法,在不確定性、不完備、模糊信息的環(huán)境下實現智能制造與產品設計旨在服役多目標多技術路線工作方案優(yōu)化的自主決策。
8.工藝工裝協(xié)同推送與自動裝夾技術
個性化推送技術及語義檢索技術融入工藝工裝推送過程中,基于融合智能裝備與產品工藝工裝特征的個性化語義檢索,形成個性化的工藝工裝協(xié)同推送機制,提高智能制造工藝設計過程中獲取產品工藝工裝的效率。
9.產品知識圖譜與知識網絡構建技術
通過對分布的多學科知識數據進行結構層次上的集成,消除多學科多領域知識數據的語法和語義分歧,使得數據結構具有一致性,進而對設計設計庫數據進行知識表示,完成知識庫的建立。
結構化數據、半結構化數據、非結構化數據通過結構化改造和篩選整合,形成趨同或者一致且無冗余的結構化數據,也就是將客觀世界主觀抽象成設計數據庫,再通過知識表示形成知識庫。
10.機電液一體化云平臺知識服務技術
知識服務技術著手于知識的自動推送,有序地組織機、電、液一體化跨學科知識,并在合適的設計過程中推送給設計人員合適的設計知識,從而實現跨學科知識服務的個性化、高效化和智能化。