目前,在微/納米機械中,精密測量技術一個重要研究對象是微結構的機械性能與力學性能、諧振頻率、彈性模量、殘余應力及疲勞強度等。微細結構的缺陷研究,如金屬聚集物、微沉淀物、微裂紋等測試技術的納米分析技術目前尚不成熟。國外在此領域主要開展用于晶體缺陷的激光掃描層析技術,用于研究樣品頂部幾個微米之內(nèi)缺陷情況的納米激光雷達技術,其探測尺度分辨率均可達到1nm。
以激光波長為已知長度利用邁克耳遜干涉系統(tǒng)測量位移
圖像識別測量技術
隨著近代科學技術的發(fā)展,幾何尺寸與形位測量已從簡單的一維、二維坐標或形體發(fā)展到復雜的三維物體測量,從宏觀物體發(fā)展到微觀領域。正確地進行圖像識別測量已經(jīng)成為測量技術中的重要課題。
圖像識別測量過程包括:(1)圖像信息的獲??;(2)圖像信息的加工處理,特征提??;(3)判斷分類。計算機及相關計算技術完成信息的加工處理及判斷分類,這些涉及到各種不同的識別模型及數(shù)理統(tǒng)計知識。
圖像測量系統(tǒng)一般由以下結構組成。以機械系統(tǒng)為基礎,線陣、面陣電荷耦合器件CCD或全息照相系統(tǒng)構成攝像系統(tǒng);信息的轉換由視頻處理器件完成電荷信號到數(shù)字信號的轉換;計算機及計算技術實現(xiàn)信息的處理和顯示;回饋系統(tǒng)包括溫度誤差補償,攝像系統(tǒng)的自動調(diào)焦等功能;載物工作臺具有三坐標或多坐標自由度,可以精確控制微位移。
圖像測量系統(tǒng)結構
1、CCD傳感器技術
物體三維輪廓測量方法中,有三坐標法、干涉法、穆爾等高線法及相位法等。而非接觸電荷耦合器件CCD是近年來發(fā)展很快的一種圖像信息傳感器。它具有自掃描、光電靈敏度高、幾何尺寸精確及敏感單元尺寸小等優(yōu)點。隨著集成度的不斷提高、結構改善及材料質量的提高,它已日益廣泛地應用于工業(yè)非接觸圖像識別測量系統(tǒng)中。
在對物體三維輪廓尺寸進行檢測時,采用軟件或硬件的方法,如解調(diào)法、多項式插值函數(shù)法及概率統(tǒng)計法等,測量系統(tǒng)分辨率可達微米級。也有將CCD應用于測量半導體材料表面應力的研究。
2、照相技術
全息照相測量技術是60年代發(fā)展起來的一種新技術,用此技術可以觀察到被測物體的空間像。激光具有極好的空間相干性和時間相干性,通過光波的干涉把經(jīng)物體反射或透射后,光束中的振幅與相位信息。
超精密測量技術所代表的測量技術在國防、航天、航空、航海、鐵道、機械、輕工、化工、電子、電力、電信、鋼鐵、石油、礦山、煤炭、地質、勘側等領域有極其廣泛的應用,在國民經(jīng)濟建設中占有重要的地位。在精密制造中,超精密測量技術是產(chǎn)品合格的基本保證。