圖 1顯示的是如何進(jìn)行數(shù)學(xué)轉(zhuǎn)換,得出計(jì)算部分歐幾里德距離度量法的最終表達(dá)式。歐幾里德距離度量法是球形檢測(cè)過(guò)程的基礎(chǔ)。R代表三角形矩陣,用于處理以矩陣 元rM,M開始的可選符號(hào)的迭代法。其中,M代表信道矩陣以實(shí)數(shù)表達(dá)的維數(shù)。該解決方案通過(guò)M次迭代定義出遍歷樹結(jié)構(gòu),樹的每層i對(duì)應(yīng)第i根天線的處理符 號(hào)。
實(shí)現(xiàn)樹的遍歷有幾種可選方法。在我們的實(shí)施方案中,則使用了廣度優(yōu)先搜索法,這是因?yàn)樵摲椒ú捎脗涫軞g迎的前饋結(jié)構(gòu),因此具有硬件友好特征。在每一層,該實(shí)施方案只選擇K個(gè)距離最小的幸存節(jié)點(diǎn)來(lái)計(jì)算擴(kuò)展情況。球形檢測(cè)器處理天線的次序?qū)?/span>BER性能有著極大的影響。因此,在進(jìn)行球形檢測(cè)前,我們的設(shè)計(jì)采用了類似于V-BLAST技術(shù)的信道重新排序技術(shù)。
該方法通過(guò)多次迭代,計(jì)算出信道矩陣的偽逆矩陣的行范數(shù),然后確定信道矩陣最佳列檢測(cè)次序。根據(jù)迭代次數(shù),該方法可以選擇出范數(shù)最大或者最小的行。歐幾里德范數(shù)最小的逆矩陣行表示天線的影響最強(qiáng),而歐幾里德范數(shù)最大的行則表示天線的影響最弱。這種新穎的方法首先處理最弱的數(shù)據(jù)流,隨后依次迭代處理功率從高到 低的數(shù)據(jù)流。
FPGA 硬件應(yīng)用
為實(shí)現(xiàn)上述系統(tǒng),我們采用了賽靈思 Virtex-5 FPGA技術(shù)。該設(shè)計(jì)流程采用賽靈思System Generator進(jìn)行設(shè)計(jì)捕獲、仿真和驗(yàn)證。為了支持各種不同數(shù)量的天線/用戶和調(diào)制次序,我們將檢測(cè)器設(shè)計(jì)用于要求最高的4x4、64-QAM情況下。
我們的模型假定接收方非常清楚信道矩陣,這可以通過(guò)傳統(tǒng)的信道估算方法來(lái)實(shí)現(xiàn)。在信道重新排序和QR分解之后,我們開始使用球形檢測(cè)器。為準(zhǔn)備使用軟輸入軟輸出信道解碼器(如turbo解碼器),我們通過(guò)計(jì)算檢測(cè)到的比特的對(duì)數(shù)似然比(LLR)來(lái)生成軟輸出。該系統(tǒng)的主要架構(gòu)元素包括數(shù)據(jù)副載波處理和系統(tǒng)子模塊管理功能,以便實(shí)時(shí)處理所需數(shù)量的子載波,同時(shí)最大程度地降低處理時(shí)延。對(duì)每個(gè)數(shù)據(jù)副載波都進(jìn)行了信道 矩陣估算,限定了每個(gè)信道矩陣可用的處理時(shí)間。對(duì)選中的FPGA而言,其目標(biāo)時(shí)鐘頻率為225MHz,通信帶寬為5MHz(相當(dāng)于WiMAX系統(tǒng)中的 360個(gè)數(shù)據(jù)子載波),每個(gè)信道矩陣間隔可用的處理時(shí)鐘周期數(shù)為64。