1 電池管理系統(tǒng)(BMS)定義
鋰離子電池的安全工作區(qū)域如圖1所示。BMS的主要任務是保證電池系統(tǒng)的設計性能:1)安全性;;2)耐久性;3)動力性。
圖1鋰離子電池安全工作區(qū)域示意
BMS軟硬件的基本框架如圖2所示,應該具有的功能:1)電池參數(shù)檢測。2)電池狀態(tài)估計。3)在線故障診斷。4)電池安全控制與報警。5)充電控制。6)電池均衡。7)熱管理。8)網(wǎng)絡通訊。9)信息存儲。10)電磁兼容。
圖2車用BMS軟硬件基本框架
2電池管理系統(tǒng)關鍵技術(shù)
2.1電池管理系統(tǒng)對傳感器信號的要求
2.1.1單片電壓采集精度
一般地,為了安全監(jiān)控,電池組中的每串電池電壓都需要采集。不同的體系對精度的要求不一樣。
圖3單體電池OCV曲線及其電壓采集精度要求
對于LMO/LTO電池,單體電壓采集精度只需達到10 mV。對于LiFePO4/C電池,單體電壓采集精度需要達到1mV左右。但目前單體電池的電壓采集精度多數(shù)只能達到5 mV。
2.1.2采樣頻率與同步
電池系統(tǒng)信號有多種,而電池管理系統(tǒng)一般為分布式,信號采集過程中,不同控制子板信號會存在同步問題,會對實時監(jiān)測算法產(chǎn)生影響。設計BMS時,需要對信號的采樣頻率和同步精度提出相應的要求。
2.2電池狀態(tài)估計
電池各種狀態(tài)估計之間的關系如圖4所示。電池溫度估計是其他狀態(tài)估計的基礎。
圖4電池管理系統(tǒng)算法框架
2.2.1電池溫度估計及管理
溫度對電池性能影響較大,目前一般只能測得電池表面溫度,而電池內(nèi)部溫度需要使用熱模型進行估計。根據(jù)估計結(jié)構(gòu)對電池進行熱管理。
圖5電池內(nèi)部溫度估計流程
2.2.2荷電狀態(tài)(SOC)估計
SOC算法主要分為單一SOC算法和多種單一SOC算法的融合算法。單一SOC算法包括安時積分法、開路電壓法、基于電池模型估計的開路電壓法、其他基于電池性能的SOC估計法等。融合算法包括簡單的修正、加權(quán)、卡爾曼濾波以及滑模變結(jié)構(gòu)方法等。
卡爾曼濾波等基于電池模型的SOC估計方法精確可靠,是目前的主流方法。
2.2.3健康狀態(tài)(SOH)估計
SOH是指電池當前的性能與正常設計指標的偏離程度。圖6為電池性能衰減原理簡單示意圖。目前SOH估計方法主要分為耐久性經(jīng)驗模型估計法和基于電池模型的參數(shù)辨識方法。
圖6鋰離子電池雙水箱模型
2.2.4功能狀態(tài)(SOF)估計
估計電池SOF可以簡單認為是在估計電池的最大可用功率。常用的SOF估計方法可以分為基于電池MAP圖的方法和基于電池模型的動態(tài)方法兩大類。
2.2.5剩余能量(RE)或能量狀態(tài)(SOE)估計
RE或SOE是電動汽車剩余里程估計的基礎,與百分數(shù)的SOE相比,RE在實際的車輛續(xù)駛里程估計中的應用更為直觀。
圖7電池剩余能量(RE)示意
圖8是一種適用于動態(tài)工況的電池剩余放電能量精確預測方法EPM(energy prediction method)。
圖8電池剩余放電能量預測方法(EPM)結(jié)構(gòu)
2.2.6故障診斷及安全狀態(tài)(SOS)估計
故障診斷是保證電池安全的必要技術(shù)之一。安全狀態(tài)估計屬于電池故障診斷的重要項目之一,BMS可以根據(jù)電池的安全狀態(tài)給出電池的故障等級。
2.2.7充電控制
充電析鋰是影響電池壽命的主因,目前對于析鋰的機理已經(jīng)有了研究,基于析鋰狀態(tài)識別的充電管理將是今后的主要研究方向,應在保證電池負極不發(fā)生析鋰情況下,盡可能增大充電電流,縮短充電時間。
2.2.8電池一致性與均衡管理