另外,為了延長一次側(cè)的開關(guān)導(dǎo)通時間,可以稍微降低開關(guān)頻率并提高輸出功率的要求。這樣,一次側(cè)電流峰值增加,傳輸?shù)哪芰恳苍黾?Pout = 40W時)。當(dāng)超過最大輸出功率時,過電流保護(hù)功能工作并阻止開關(guān)動作,以防止系統(tǒng)過熱。
圖5. 準(zhǔn)諧振工作時的SiC-MOSFET開關(guān)波形
首先,評估板因有兩個工作點(diǎn)而以電流不連續(xù)模式(DCM)工作。然后,在最后一個工作點(diǎn)(40W)時正好達(dá)到電流臨界模式(BCM)。根據(jù)不同的輸入電壓,DCM和BCM在不同的輸出功率進(jìn)行切換。
圖6左側(cè)是對于不同的輸入電壓,在最大40W的負(fù)載范圍輸出12V電壓時的效率。如圖6右側(cè)所示,通過測量可知SiC-MOSFET的外殼溫度保持在90℃以下。SiC-MOSFET的最大容許結(jié)溫為175℃。芯片-外殼間的熱阻遠(yuǎn)遠(yuǎn)低于外殼-環(huán)境間的熱阻,因此只要是結(jié)溫低于上限值的外殼即可以說是安全的。這表明該評估板即使在高達(dá)40W的輸出功率條件下,無需散熱器也可工作。另外,如果對SiC-MOSFET增加散熱器來冷卻輸出整流二極管,則可以實(shí)現(xiàn)更高的輸出功率。
圖6. 使用了SiC-MOSFET的輔助電源單元評估
這里給出的是各DC輸入電壓的測量值,利用400 / 480V的三相AC電源也可運(yùn)行評估板。PCB上安裝了整流所需的二極管電橋。
利用SiC-MOSFET技術(shù),可實(shí)現(xiàn)小型化并提高系統(tǒng)效率、可靠性及簡潔性
在需要幾十瓦的簡單且性價比高的三相輸入用單端反激式解決方案和超過400V的DC輸入電壓條件下,Si-MOSFET并不適用。因?yàn)榇箅妷篠i功率MOSFET的性能較低。另外,使用雙端反激式或堆疊式MOSFET等設(shè)計復(fù)雜結(jié)構(gòu)的輔助電源,是非常費(fèi)時費(fèi)力的。這部分精力應(yīng)該用在主電源系統(tǒng)的設(shè)計上。
利用1700V SiC-MOSFET的優(yōu)異性能和BD768xFJ控制IC,不僅能夠設(shè)計三相系統(tǒng)用或高DC輸入電壓用的簡單輔助電源,而且還可以發(fā)揮出卓越的性能。 利用基于SiC-MOSFET的技術(shù),設(shè)計人員可提高產(chǎn)品的效率、簡潔性、可靠性并實(shí)現(xiàn)小型化。1700V SiC-MOSFET在性能方面的優(yōu)勢可以與使用了Si-MOSFET的解決方案系統(tǒng)的成本相匹敵,比如可削減散熱器、線圈等昂貴部件的成本。經(jīng)過優(yōu)化的控制IC可安全地驅(qū)動SiC-MOSFET,是能夠減輕設(shè)計負(fù)擔(dān)并將系統(tǒng)產(chǎn)品投入市場的周期最短化的極具突破性的解決方案。
ROHM的官網(wǎng)公開了更詳細(xì)的電路圖、尺寸指南、部件清單以及更詳細(xì)的應(yīng)用說明。另外,還可聯(lián)系ROHM獲取專為輔助電源單元而優(yōu)化了控制IC和SiC-MOSFET的評估板。