圖1. M次交錯(cuò)的n位ADC陣列每一個(gè)ADC的采樣速率為fs/M,得到的時(shí)間交錯(cuò)ADC采樣速率為fs。M = 4的時(shí)鐘方案示例在該圖下半部分顯示。
為了更好地理解 IL 原理,圖 1 中一個(gè)模擬輸入 VIN (t) 以 M 個(gè) ADC 進(jìn)行采樣,其結(jié)果為組合數(shù)字輸出數(shù)據(jù)序列 DOUT。ADC1 最先采樣 VIN (t0) 并開(kāi)始將其轉(zhuǎn)換為n位數(shù)字信號(hào)。Ts 秒后,ADC2 將采樣 VIN (t0+Ts) 并開(kāi)始將其轉(zhuǎn)換為n位數(shù)字信號(hào)。接著,Ts 秒后,ADC3 將采樣 VIN (t0 +2Ts),以此類(lèi)推。ADCM 完成 VIN (t0 +(M-1)×Ts) 采樣后,開(kāi)始下一個(gè)采樣周期,并從 ADC1 采樣 VIN (t0 +M×Ts) 開(kāi)始,依次進(jìn)行下去。
由于ADC順序輸出n位數(shù)據(jù)且輸出順序與剛才描述的采樣操作順序一致,這些數(shù)字n位字由同一張圖右側(cè)的解復(fù)用器所采集。這里獲取的是重新組合的數(shù)據(jù)輸出序列 DOUT (t0 + L),DOUT (t0 +L + Ts),DOUT (t0 + L + 2Ts),... 。L 表示每一個(gè)單獨(dú)ADC的固定轉(zhuǎn)換時(shí)間,而該重新組合的數(shù)據(jù)序列是一個(gè) n 位數(shù)據(jù)序列,采樣速率為 fs。因此,雖然各個(gè)ADC(通常稱(chēng)為“通道”)為 n 位 ADC 且采樣速率為 fs/M,但整體等于采樣速率為 fs的單個(gè) n 位 ADC,而我們將其稱(chēng)為時(shí)間交錯(cuò) ADC(與通道相區(qū)別)。輸入本質(zhì)上是分隔開(kāi)的,并由陣列中的 ADC 單獨(dú)處理,然后在輸出端連續(xù)重組,以便構(gòu)成輸入 VIN 的高數(shù)據(jù)速率表示 DOUT。
這種強(qiáng)大的技術(shù)在實(shí)際使用時(shí)存在一些難題。一個(gè)重要的問(wèn)題是來(lái)自通道的M數(shù)據(jù)流經(jīng)過(guò)數(shù)字組裝后重構(gòu)原始輸入信號(hào) VIN。如果我們看一下頻譜 DOUT;除了看到 VIN 的數(shù)字信號(hào)以及模數(shù)轉(zhuǎn)換引入的失真,我們還將看到額外的和大量的雜散成分,稱(chēng)為“交錯(cuò)雜散”(或簡(jiǎn)稱(chēng)為 IL 雜散);IL 雜散既沒(méi)有多項(xiàng)式類(lèi)型失真的簽名——比如較高次信號(hào)諧波(2次,3次,等等)——也沒(méi)有量化或 DNL 誤差簽名。IL 偽像可視為時(shí)域固定碼噪聲的一種形式,由通道中的模擬損害引起,因?yàn)樵诮诲e(cuò)過(guò)程中采用分隔轉(zhuǎn)換信號(hào)進(jìn)行調(diào)制并出現(xiàn)在最終的數(shù)字化輸出 DOUT。
讓我們分析一個(gè)簡(jiǎn)單的示例,了解可能會(huì)發(fā)生什么情況。考慮頻率 fIN 下正弦輸入 VIN 的雙路交錯(cuò) ADC 情況。假定 ADC1 具有增益 G1,ADC2 具有差分增益 G2。在這種雙路 IL ADC中,ADC1 和 ADC2 將交替采樣 VIN。因此,如果 ADC1 轉(zhuǎn)換偶數(shù)樣本,而 ADC2 轉(zhuǎn)換奇數(shù)樣本,則所有 DOUT 偶數(shù)數(shù)據(jù)的幅度都將由 G1設(shè)置,而所有 DOUT 奇數(shù)數(shù)據(jù)的幅度都將由G2設(shè)置。然后,DOUT 不僅包含 VIN,還包括一些多項(xiàng)式失真,但它受到 G1 和G2 的交替放大,就好像我們采用頻率為 fs/2 的方波對(duì) VIN 進(jìn)行幅度調(diào)制。這樣做會(huì)引入更多雜散成分。特別地,DOUT 在 fs/2 – fIN 頻率處會(huì)包含“增益雜散”;并且不幸的是,該雜散的頻率會(huì)跟蹤輸入fIN,且位于交錯(cuò) ADC 的第一奈奎斯特頻段內(nèi)(即在 fs/2 內(nèi)),而在所有其它奈奎斯特頻段內(nèi)也會(huì)存在混疊。該交錯(cuò)雜散的功率/幅度取決于兩個(gè)增益 G1和G2 之間的凈差。換言之,它取決于增益誤差失配。而最終,它取決于輸入 VIN 自身的幅度。
如果輸入并非簡(jiǎn)單正弦波,而是真實(shí)應(yīng)用中的全頻帶限幅信號(hào),那么“增益雜散”就不只是干擾音了,而是頻帶限幅輸入信號(hào)自身的完整調(diào)節(jié)鏡像,出現(xiàn)在奈奎斯特頻段內(nèi)。這在一定程度上抵消了交錯(cuò)帶來(lái)的帶寬增加的優(yōu)勢(shì)。
雖然上例中我們僅考慮了通道間的增益誤差失配,其它損害也會(huì)引起交錯(cuò)雜散。失調(diào)失配(通道失調(diào)之間的差)引起固定頻率的信號(hào)音(“失調(diào)雜散”),功率與失調(diào)失配成正比。當(dāng)某些通道比預(yù)定順序更早或更晚采樣某位時(shí),便發(fā)生采樣時(shí)間偏斜。它會(huì)引入“時(shí)間雜散”,其頻率與增益雜散全一致(并疊加同樣的幅度),但功率會(huì)隨著 fIN 的增加以及輸入幅度的增加而不斷加強(qiáng)。各通道之間的帶寬失配會(huì)引入更多的雜散成分,頻率取決于 fIN,并且正如時(shí)間雜散,雜散功率不僅隨著輸入幅度,而且還會(huì)隨著fIN自身而逐步增加。再次強(qiáng)調(diào),無(wú)論何種情況,輸出頻譜下降的程度并不取決于通道損害的絕對(duì)值(失調(diào)、增益、時(shí)序、頻段),而是取決于通道之間的相對(duì)失配或通道之差。
雖然時(shí)間交錯(cuò)的基本技術(shù)存在已有幾十年,但I(xiàn)L可在何種程度上保持最小化則將其過(guò)去的適用性限制于低分辨率轉(zhuǎn)換器。然而,最近在通道失配校準(zhǔn)方面以及抑制殘留IL雜散成分方面的進(jìn)步已經(jīng)可以實(shí)現(xiàn)全集成、極高速、12/14/16 位 IL ADC。這種情況下,我們需要對(duì)交錯(cuò)進(jìn)行分類(lèi)。我們一般將兩個(gè)交錯(cuò)通道稱(chēng)為“乒乓”工作。然后,當(dāng)我們描述較少通道數(shù)的情況(比如 3 通道至4通道),以及大量通道的情況時(shí)(比如超過(guò) 4 個(gè)通道,通常達(dá)到 8 個(gè)或更多),我們還區(qū)分了“輕度交錯(cuò)”和“重度交錯(cuò)”。
乒乓(雙路)交錯(cuò)