請您腦補一個場景,小區(qū)中心只立著一盞路燈,陰影面積當然會很大,而如果在小區(qū)里均勻設置很多路燈,陰影面積則會小得多了。所以說,將傳統(tǒng)的宏基站變成站點更多密度更大的微基站,是解決毫米波“直線問題”的有效方法。
這只是微基站的一個原由,還有一個更強大的原由。5G時代的入網設備數(shù)量會呈爆炸性的增長,單位面積內的入網設備可能會增至千倍,若延續(xù)以往的宏基站覆蓋模式,即使基站的帶寬再大也無力支撐。這個原由很好理解,以前的宏基站覆蓋1000個上網用戶,這些用戶均分這個基站的速率資源,而進入5G時代后用戶的速率要求高多了,一個基站的資源就遠遠不夠分了,只能布設更多的基站,例如讓每個基站只負責20個用戶,分餐的人少了,每個人自然就能多吃。
基站微型化則設布設密度會加大,為避免基站之間的頻譜互擾,基站的輻射功率譜就會降低,同時手機的輻射功率也會降低,這有兩個好外,一是功耗小了待機時間會增加,二是對人體的輻射會降低。傳統(tǒng)基站好比是房屋中間的火爐子,近處燙遠處冷,而5G的微基站就好比是地暖,發(fā)熱均勻更加舒適。
微基站數(shù)量大幅度增加后,傳統(tǒng)的鐵塔和樓頂架設方式將會擴展,路燈桿、廣告燈箱、樓宇內部的天花板,都會是微基站架設的理想地點。
波長縮短到毫米波還會有什么影響呢?還會影響到手機天線的變化,這就是下一節(jié)要說的5G另一項技術—高階MIMO。
4、高階MIMO
根據天線理論,天線長度應與波長成正比,大約在1/10~1/4之間,當前手機使用的是甚高頻段(即分米波),天線長線大約在幾厘米左右,通常安裝在手機殼內的上部。
天線的長度為什么應在波長的1/10~1/4之間?因為這個比例可使電波的輻射和接收更有效,為什么會更有效?這我就不知道了,這得問物理學家。
5G時代的手機頻率在提升幾十倍后,相應的手線天線長度也會降低到以前的幾十分之一,會變成毫米級的微型天線,手機里就可以布設很多個天線,乃至形成多天線陣列。
多天線陣列要求天線之間的距離保持在半個波長以上,手機的面積很小,現(xiàn)在的手機天線是幾厘米長,多天線陣列是難以設置的。而隨著天線長度的降低,特別是5G時代的毫米尺寸天線,就可以布設多天線陣列了,就給高階MIMO技術的實現(xiàn)帶來了可能。
啥是MIMO呢?其英文簡寫是“多入多出”的意思,高階MIMO的意思是指基站與手機之間有很多對的信道并行通信,每一對天線都獨立傳送一路信息,經匯集后可成倍提高速率,這當然是件極好的事。
不知您是否思考過這個問題:因為基站不知道您在哪個方位,所以它跟你通信使用的電磁波是全向輻射的,就好像是電燈泡發(fā)出的光那樣,只有到達你手機的輻射才是有用的,其它方向的輻射都是浪費的,這種巨大的無用輻射還成為了其它手機的干擾。
如上圖所示,因為手電筒的能量更集中,所以比燈泡照的更遠,基站與某部手機的關系就相當于光源與被照射物的關系,現(xiàn)在基站與手機的關系就是燈泡模式,不管手機在哪個方位,都會把針對這部手機的信號進行全向的輻射,當然絕大多數(shù)非正對方向的能量都是浪費掉了,而且還成為了其它手機的干擾。
能不能把燈泡模式改成有指向性的手電筒模式呢,即把上圖左面的全向輻射樣式改成右面的這種窄波瓣樣式呢?從而提高能量的使用效率?這就是下節(jié)要說到的波束賦形技術。
5、波束賦形技術